self-dual program - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

self-dual program - translation to ρωσικά

POLYHEDRON WHOSE VERTICES CORRESPOND TO THE FACES OF ANOTHER ONE
Dual polyhedra; Dual polytope; Self-dual polyhedron; Self-dual polyhedra; Geometric dual; Dorman Luke; Dorman Luke construction; Polyhedral dual; Self-dual figure; Self-dual polytope; Dual tessellation; Canonical dual; Polyhedron dual; Dual (polyhedron); Tiling dual; Dual tiling
  • Canonical [[dual compound]] of cuboctahedron (light) and rhombic dodecahedron (dark). Pairs of edges meet on their common [[midsphere]].
  • The [[Infinite-order apeirogonal tiling]], {∞,∞} in red, and its dual position in blue
  • topological dual]].<br>Images from [[Kepler]]'s [[Harmonices Mundi]] (1619)
  • The [[square tiling]], {4,4}, is self-dual, as shown by these red and blue tilings
  • The dual of a [[cube]] is an [[octahedron]]. Vertices of one correspond to faces of the other, and edges correspond to each other.

self-dual program      

математика

автодуальная программа

dual space         
  • ''x''<sub>1</sub> + ''x''<sub>2</sub>}}.
The addition +′ induced by the transformation can be defined as ''<math>[\Psi(x_1) +' \Psi(x_2)](\varphi) = \varphi(x_1 + x_2) = \varphi(x)</math>'' for any ''<math>\varphi</math>'' in the dual space.
VECTOR SPACE OF LINEAR FUNCTIONALS (MAY CONSIST ONLY ON CONTINUOUS FUNCTIONALS OR OF ALL FUNCTIONALS)
Duality (linear algebra); Dual vector space; Algebraic dual; Continuous dual; Continuous dual space; Algebraic dual space; Norm dual; Double dual; Topological dual space; Dual (linear algebra); Annihilator (linear algebra); Dual Space

математика

двойственное пространство

computer programme         
  • A symbolic representation of an ALU
  • Computer memory map
  • DEC]] [[VT100]] (1978) was a widely used [[computer terminal]].
  • Switches for manual input on a [[Data General Nova]] 3, manufactured in the mid-1970s
  • Lovelace's description from Note G
  • [["Hello, World!" program]] by [[Brian Kernighan]] (1978)
  • A kernel connects the application software to the hardware of a computer.
  • NOT gate
  • A computer program written in an imperative language
  • hardware]].
  • Artist's depiction of Sacramento State University's Intel 8008 microcomputer (1972)
  • A sample function-level data-flow diagram
  • Fran Bilas]] programmed the [[ENIAC]] by moving cables and setting switches.
  • right
  • Physical memory is scattered around RAM and the hard disk. Virtual memory is one continuous block.
SEQUENCE OF INSTRUCTIONS WRITTEN IN PROGRAMMING LANGUAGE TO PERFORM A SPECIFIED TASK WITH A COMPUTER
Computer programme; Computer code; Computer programs; Software program; Program (programming); Program (computer science); Program (computing); Computer Program; Software code; Program (computer); Computer Programs; Program file; Computer program code; Program module
программа для вычислительной машины, машинная программа

Ορισμός

self-hatred
(also self-hate)
¦ noun intense dislike of oneself.

Βικιπαίδεια

Dual polyhedron

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedra – the (convex) Platonic solids and (star) Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual. The dual of an isogonal polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an isohedral polyhedron (one in which any two faces are equivalent [...]), and vice versa. The dual of an isotoxal polyhedron (one in which any two edges are equivalent [...]) is also isotoxal.

Duality is closely related to polar reciprocity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.

Μετάφραση του &#39self-dual program&#39 σε Ρωσικά